Synaptic proteins expressed by oligodendrocytes mediate CNS myelination

Author:

Hughes Alexandria N.,Appel BruceORCID

Abstract

ABSTRACTOligodendrocytes ensheath neuronal axons with myelin, a proteolipid-rich membrane that increases conduction velocity and provides trophic support. Our lab and others have provided evidence that vesicular release from neurons promotes myelin sheath growth. Complementarily, transcriptomic and proteomic approaches have revealed that oligodendrocytes express many proteins that allow dendrites to sense and respond to vesicular release at synapses. Do axon-myelin contacts use similar communication mechanisms as nascent synapses to form myelin sheaths on axons? To test this, we used fusion proteins to track synaptic vesicle localization and membrane fusion within spinal cord axons of zebrafish larvae during developmental myelination. Additionally, we used a CRISPR/Cas9-mediated GAL4 enhancer trap and genetically-encoded intrabody to detect expression and localization of PSD-95, a component of dendritic postsynaptic complexes, within oligodendrocytes. We found that synaptic vesicles accumulate at ensheathment sites over time and are exocytosed with variable patterning underneath myelin sheaths. Accordingly, we also found that most, but not all sheaths localized PSD-95 with patterning similar to exocytosis site location within the axon. By querying published transcriptome databases, we found that oligodendrocytes express numerous transsynaptic adhesion molecules that function across synapses to promote synapse formation and maturation. Disruption of candidate PDZ-binding transsynaptic adhesion proteins in oligodendrocytes revealed that these proteins have variable effects on sheath length and number. We focused on one candidate, Cadm1b (SynCAM1), and demonstrated that it localized to myelin sheaths where both its PDZ binding and extracellular adhesion to axons are required for myelin sheath growth. Our work reveals shared mechanisms of synaptic and myelin plasticity and provides new targets for mechanistic unraveling of activity-regulated myelination.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3