Mechanistic dissection of alga recognition and uptake in coral-algal endosymbiosis

Author:

Hu MinjieORCID,Bai Yun,Zheng Xiaobin,Zheng Yixian

Abstract

AbstractMany corals form a mutually beneficial relationship with the dinoflagellate algae calledSymbiodiniaceae. Cells in the coral gastrodermis recognize, phagocytose, and house the algae in an organelle called symbiosome, which supports algae photosynthesis and nutrient exchange with corals1–3. Rising ocean temperature disrupts this endosymbiotic relationship, leading to alga loss, coral bleaching and death, and the degradation of marine ecosystems4–6. Mitigation of coral death requires a mechanistic understanding of coral-algal endosymbiosis. We have developed genomic resources to enable the use of a soft coralXenia speciesas a model to study coral-algal endosymbiosis7. Here we report an effective RNA interference (RNAi) method and its application in the functional studies of genes involved in early steps of endosymbiosis. We show that an endosymbiotic cell marker called LePin (for itsLectin and kazalProteaseinhibitor domains) is a secreted lectin that binds to algae to initiate the formation of alga-containing endosymbiotic cells. The evolutionary conservation of LePin among marine endosymbiotic anthozoans suggests a general role in coral-algal recognition. Coupling bioinformatics analyses with RNAi and single cell (sc)-RNA-seq, we uncover three gene expression programs (GEP) influenced by LePin during the early and middle stages of endosymbiotic lineage development. Further studies of genes in these GEPs lead to the identification of two scavenger receptors that support the formation of alga-containing endosymbiotic cells, most likely by initiating phagocytosis and modulating coral immune response. We also identify two actin regulators for endosymbiosis, which shed light on the phagocytic machinery and a possible mechanism for symbiosome formation. Our findings should usher in an era of mechanistic studies of coral-algal endosymbiosis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3