Abstract
ABSTRACTBackgroundChatGPT is a 175 billion parameter natural language processing model which can generate conversation style responses to user input.ObjectiveTo evaluate the performance of ChatGPT on questions within the scope of United States Medical Licensing Examination (USMLE) Step 1 and Step 2 exams, as well as analyze responses for user interpretability.MethodsWe used two novel sets of multiple choice questions to evaluate ChatGPT’s performance, each with questions pertaining to Step 1 and Step 2. The first was derived from AMBOSS, a commonly used question bank for medical students, which also provides statistics on question difficulty and the performance on an exam relative to the userbase. The second, was the National Board of Medical Examiners (NBME) Free 120-question exams. After prompting ChatGPT with each question, ChatGPT’s selected answer was recorded, and the text output evaluated across three qualitative metrics: logical justification of the answer selected, presence of information internal to the question, and presence of information external to the question.ResultsOn the four datasets, AMBOSS-Step1, AMBOSS-Step2, NBME-Free-Step1, and NBMEFree-Step2, ChatGPT achieved accuracies of 44%, 42%, 64.4%, and 57.8%. The model demonstrated a significant decrease in performance as question difficulty increased (P=.012) within the AMBOSSStep1 dataset. We found logical justification for ChatGPT’s answer selection was present in 100% of outputs. Internal information to the question was present in>90% of all questions. The presence of information external to the question was respectively 54.5% and 27% lower for incorrect relative to correct answers on the NBME-Free-Step1 and NBME-Free-Step2 datasets (P<=.001).ConclusionChatGPT marks a significant improvement in natural language processing models on the tasks of medical question answering. By performing at greater than 60% threshold on the NBME-FreeStep-1 dataset we show that the model is comparable to a third year medical student. Additionally, due to the dialogic nature of the response to questions, we demonstrate ChatGPT’s ability to provide reasoning and informational context across the majority of answers. These facts taken together make a compelling case for the potential applications of ChatGPT as a medical education tool.
Publisher
Cold Spring Harbor Laboratory
Reference20 articles.
1. Scott Kevin . Microsoft teams up with openai to exclusively license GPT-3 language model 2020.
2. Bowman Emma . A new AI chatbot might do your homework for you. but it’s still not an A+ student 2022.
3. How good is chatgpt? https://www.economist.com/business/2022/12/08/how-good-is-chatgpt 2022.
4. Can Artificial Intelligence (chat GPT) get a 7 on an SL maths paper? 2022.
5. Das Avisha , Selek Salih , Warner Alia R. , et al. Conversational Bots for Psychotherapy: A Study of Generative Transformer Models Using Domain-specific Dialogues in Proceedings of the 21st Workshop on Biomedical Language Processing(Dublin, Ireland):285– 297Association for Computational Linguistics 2022.
Cited by
95 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献