Random electrical noise drives non-deterministic computation in cortical neural networks

Author:

Stoll Elizabeth AORCID

Abstract

In cortical neurons, spontaneous membrane potential fluctuations affect the likelihood of firing an action potential. Yet despite retaining sensitivity to random electrical noise in gating signaling outcomes, these cells achieve highly accurate computations with extraordinary energy efficiency. A new approach models the inherently probabilistic nature of cortical neuron firing as a thermodynamic process of non-deterministic computation. Typically, the cortical neuron is modeled as a binary computational unit, in either an off-state or an on-state, but here, the cortical neuron is modeled as a two-state quantum system, with some probability of switching from an off-state to an on-state. This approach explicitly takes into account the contribution of random electrical noise in gating signaling outcomes, particularly during cortical up-states. In this model, the membrane potential is described as the mixed sum of all component microstates, or the quantity of von Neumann entropy encoded by the computational unit. This distribution of macrostates is given by a density matrix, which undergoes a unitary change of basis as each unit, ‘System A’, interacts with its surrounding environment, ‘System B’. Any linear correlations reduce the number of distinguishable pure states, leading to the selection of an optimal system state in the present context. This process of information compression is shown to be equivalent to the extraction of predictive value from a thermodynamic quantity of information. Calculations demonstrate that estimated coulomb scattering profiles and decoherence timescales in cortical neurons are consistent with a quantum system, with random electrical noise driving signaling outcomes.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3