A thermodynamical model of non-deterministic computation in cortical neural networks

Author:

Stoll Elizabeth AORCID

Abstract

Abstract Neuronal populations in the cerebral cortex engage in probabilistic coding, effectively encoding the state of the surrounding environment with high accuracy and extraordinary energy efficiency. A new approach models the inherently probabilistic nature of cortical neuron signaling outcomes as a thermodynamic process of non-deterministic computation. A mean field approach is used, with the trial Hamiltonian maximizing available free energy and minimizing the net quantity of entropy, compared with a reference Hamiltonian. Thermodynamic quantities are always conserved during the computation; free energy must be expended to produce information, and free energy is released during information compression, as correlations are identified between the encoding system and its surrounding environment. Due to the relationship between the Gibbs free energy equation and the Nernst equation, any increase in free energy is paired with a local decrease in membrane potential. As a result, this process of thermodynamic computation adjusts the likelihood of each neuron firing an action potential. This model shows that non-deterministic signaling outcomes can be achieved by noisy cortical neurons, through an energy-efficient computational process that involves optimally redistributing a Hamiltonian over some time evolution. Calculations demonstrate that the energy efficiency of the human brain is consistent with this model of non-deterministic computation, with net entropy production far too low to retain the assumptions of a classical system.

Funder

Donations from Individuals

Publisher

IOP Publishing

Subject

Cell Biology,Molecular Biology,Structural Biology,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3