Author:
Bill Kim Y.,Pierce Elizabeth B.,Brown Michael,Peterson Brenda A.,Sanford Derek,Fear Justin,Nicholl David,San Pedro Ellyce,Reynolds Grace M.,Hunt Joanne E.,Schwark David G.,Jali Sathya,Graham Nathaniel,Cesarz Zoe,Chapman Tracey A. Lincoln,Watts Joseph M.,Hummel Aaron W.
Abstract
ABSTRACTCRISPR/Cas systems coupled with reverse transcriptase (RT), such as the recently described Prime editing, allow for site-specific replacement of DNA sequences. Despite widespread testing of Prime editing, it is currently only compatible with type II CRISPR/Cas proteins such asStreptococcus pyogenesandStaphylococcus aureusCas9. Enabling RT compatibility with other CRISPR/Cas domains, such as type V enzymes with orthogonal protospacer adjacent motif specificities and smaller protein size would expand the range of edits that can be made in therapeutic and industrial applications. We achieve this with a novel mode of DNA editing at CRISPR-targeted sites that reverse transcribes the edit into the target strand DNA (e.g., the complement of the PAM-containing strand), rather than the non-target strand DNA, as in Prime editing. We term this technologyRNA encodedDNAreplacement ofalleleswith CRISPR (hereafter, REDRAW). We show that REDRAW extends the utility of RT-mediated editing beyond type II to include multiple type V CRISPR domains. REDRAW features a broad (8-10 bases) targeting window, at which all types of substitutions, insertions and deletions are possible. REDRAW combines the advantages of type V CRISPR domains with the extensive range of genetic variation enabled by RT-mediated, templated sequence replacement strategies.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献