Abstract
AbstractAlthough homologous protein sequences are expected to adopt similar structures, some amino acid substitutions can interconvert α-helices and β-sheets. Such fold switching may have occurred over evolutionary history, but supporting evidence has been limited by the: (1) abundance and diversity of sequenced genes, (2) quantity of experimentally determined protein structures, and (3) assumptions underlying the statistical methods used to infer homology. Here, we overcame these barriers by applying multiple statistical methods to a family of ~600,000 bacterial response regulator proteins. We found that their homologous DNA-binding subunits assume divergent structures: helix-turn-helix versus α-helix+β-sheet (winged helix). Phylogenetic analyses, ancestral sequence reconstruction, and AlphaFold2 models indicated that amino acid substitutions facilitated a switch from helix-turn-helix into winged helix. This structural transformation likely expanded DNA-binding specificity. Our approach uncovers an evolutionary pathway between two protein folds and provides methodology to identify secondary structure switching in other protein families.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献