Distinguishing features of fold‐switching proteins

Author:

Chakravarty Devlina1,Schafer Joseph W.1,Porter Lauren L.12ORCID

Affiliation:

1. National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda Maryland USA

2. Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health Bethesda Maryland USA

Abstract

AbstractThough many folded proteins assume one stable structure that performs one function, a small‐but‐increasing number remodel their secondary and tertiary structures and change their functions in response to cellular stimuli. These fold‐switching proteins regulate biological processes and are associated with autoimmune dysfunction, severe acute respiratory syndrome coronavirus‐2 infection, and more. Despite their biological importance, it is difficult to computationally predict fold switching. With the aim of advancing computational prediction and experimental characterization of fold switchers, this review discusses several features that distinguish fold‐switching proteins from their single‐fold and intrinsically disordered counterparts. First, the isolated structures of fold switchers are less stable and more heterogeneous than single folders but more stable and less heterogeneous than intrinsically disordered proteins (IDPs). Second, the sequences of single fold, fold switching, and intrinsically disordered proteins can evolve at distinct rates. Third, proteins from these three classes are best predicted using different computational techniques. Finally, late‐breaking results suggest that single folders, fold switchers, and IDPs have distinct patterns of residue–residue coevolution. The review closes by discussing high‐throughput and medium‐throughput experimental approaches that might be used to identify new fold‐switching proteins.

Funder

U.S. National Library of Medicine

National Institutes of Health

Publisher

Wiley

Subject

Molecular Biology,Biochemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3