Abstract
AbstractInherited retinal diseases are a leading and untreatable cause of blindness and are therefore candidate diseases for gene therapy. Recombinant vectors derived from adeno-associated virus (rAAV) are currently the most promising vehicles forin vivotherapeutic gene delivery to the retina. However, there is a need for novel AAV-based vectors with greater efficacy for ophthalmic applications, as underscored by recent reports of dose-related inflammatory responses in clinical trials of rAAV-based ocular gene therapies. Improved therapeutic efficacy of vectors would allow for decreases in the dose delivered, with consequent reductions in immune reactions. Here, we describe the development of new rAAV vectors using bioconjugation chemistry to modify the rAAV capsid, thereby improving the therapeutic index. Covalent coupling of a mannose ligand,viathe formation of a thiourea bond, to the amino groups of the rAAV capsid significantly increases vector transduction efficiency of both rat and nonhuman primate retinas. These optimized rAAV vectors have important implications for the treatment of a wide range of retinal diseases.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献