Unsupervised reference-free inference reveals unrecognized regulated transcriptomic complexity in human single cells

Author:

Dehghannasiri RoozbehORCID,Henderson George,Bierman Rob,Chaung Kaitlin,Baharav TavorORCID,Wang Peter,Salzman Julia

Abstract

AbstractMyriad mechanisms diversify the sequence content of eukaryotic transcripts at the DNA and RNA level with profound functional consequences. Examples include diversity generated by RNA splicing and V(D)J recombination. Today, these and other events are detected with fragmented bioinformatic tools that require predefining a form of transcript diversification; moreover, they rely on alignment to a necessarily incomplete reference genome, filtering out unaligned sequences which can be among the most interesting. Each of these steps introduces blindspots for discovery. Here, we develop NOMAD+, a new analytic method that performs unified, reference-free statistical inference directly on raw sequencing reads, extending the core NOMAD algorithm to include a micro-assembly and interpretation framework. NOMAD+ discovers broad and new examples of transcript diversification in single cells, bypassing genome alignment and without requiring cell type metadata and impossible with current algorithms. In 10,326 primary human single cells in 19 tissues profiled with SmartSeq2, NOMAD+ discovers a set of splicing and histone regulators with highly conserved intronic regions that are themselves targets of complex splicing regulation and unreported transcript diversity in the heat shock proteinHSP90AA1. NOMAD+ simultaneously discovers diversification in centromeric RNA expression, V(D)J recombination, RNA editing, and repeat expansions missed by or impossible to measure with existing bioinformatic methods. NOMAD+ is a unified, highly efficient algorithm enabling unbiased discovery of an unprecedented breadth of RNA regulation and diversification in single cells through a new paradigm to analyze the transcriptome.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3