OASIS: An interpretable, finite-sample valid alternative to Pearson’sX2for scientific discovery

Author:

Baharav Tavor Z.ORCID,Tse David,Salzman Julia

Abstract

Contingency tables, data represented as counts matrices, are ubiquitous across quantitative research and data-science applications. Existing statistical tests are insufficient however, as none are simultaneously computationally efficient and statistically valid for a finite number of observations. In this work, motivated by a recent application in reference-free genomic inference (1), we develop OASIS (Optimized Adaptive Statistic for Inferring Structure), a family of statistical tests for contingency tables. OASIS constructs a test-statistic which is linear in the normalized data matrix, providing closed form p-value bounds through classical concentration inequalities. In the process, OASIS provides a decomposition of the table, lending interpretability to its rejection of the null. We derive the asymptotic distribution of the OASIS test statistic, showing that these finitesample bounds correctly characterize the test statistic’s p-value up to a variance term. Experiments on genomic sequencing data highlight the power and interpretability of OASIS. The same method based on OASIS significance calls detects SARS-CoV-2 and Mycobacterium Tuberculosis strains de novo, which cannot be achieved with current approaches. We demonstrate in simulations that OASIS is robust to overdispersion, a common feature in genomic data like single cell RNA-sequencing, where under accepted noise models OASIS still provides good control of the false discovery rate, while Pearson’sX2test consistently rejects the null. Additionally, we show on synthetic data that OASIS is more powerful than Pearson’sX2test in certain regimes, including for some important two group alternatives, which we corroborate with approximate power calculations.Significance StatementContingency tables are pervasive across quantitative research and data-science applications. Existing statistical tests fall short, however; none provide robust, computationally efficient inference and control Type I error. In this work, motivated by a recent advance in reference-free inference for genomics, we propose a family of tests on contingency tables called OASIS. OASIS utilizes a linear test-statistic, enabling the computation of closed form p-value bounds, as well as a standard asymptotic normality result. OASIS provides a partitioning of the table for rejected hypotheses, lending interpretability to its rejection of the null. In genomic applications, OASIS performs reference-free and metadata-free variant detection in SARS-CoV-2 and M. Tuberculosis, and demonstrates robust performance for single cell RNA-sequencing, all tasks without existing solutions.

Publisher

Cold Spring Harbor Laboratory

Reference35 articles.

1. K Chaung , T Baharav , I Zheludev , J Salzman , A statistical, reference-free algorithm subsumes myriad problems in genome science and enables novel discovery. bioRxiv (2022).

2. Sequential Monte Carlo Methods for Statistical Analysis of Tables

3. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling;The London, Edinburgh, Dublin Philos. Mag. J. Sci,1900

4. A Agresti , Categorical data analysis. (John Wiley & Sons) Vol. 792, (2012).

5. Algebraic algorithms for sampling from conditional distributions;The Annals statistics,1998

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3