The HSV-1 immediate early protein ICP22 is a J-like protein required for Hsc70 reorganization during lytic infection

Author:

Adlakha Mitali,Livingston Christine M.,Bezsonova Irina,Weller Sandra K.ORCID

Abstract

ABSTRACTMolecular chaperones and co-chaperones are the most abundant cellular effectors of protein homeostasis, assisting protein folding and preventing aggregation of misfolded proteins. We have previously shown that HSV-1 infection results in the drastic spatial reorganization of the cellular chaperone Hsc70 into nuclear domains called VICE (VirusInducedChaperoneEnriched) domains and that this recruitment is dependent on the viral immediate early protein ICP22. In this paper, we present several lines of evidence supporting the notion that ICP22 functions as a virally encoded co-chaperone (J-protein/Hsp40) functioning together with its Hsc70 partner to recognize and manage aggregated and misfolded proteins. We show that ICP22 results in (i) nuclear sequestration of non-native proteins, (ii) reduction of cytoplasmic aggresomes in cells expressing aggregation-prone proteins and (iii) thermoprotection against heat-inactivation of firefly luciferase. (iv) Sequence homology analysis indicated that ICP22 contains an N-terminal J-domain and a C-terminal substrate binding domain, similar to type II cellular J-proteins. ICP22 may, thus, be functionally similar to J-protein/Hsp40 co-chaperones that function together with their HSP70 partners to prevent aggregation of non-native proteins. This is not the first example of a virus hijacking a function of a cellular chaperone, as SV40 T Antigen was previously shown to contain a J-domain; however, this the first known example of the acquisition of a complete J-like protein by a virus and suggests that HSV has taken advantage of the adaptable nature of J-proteins to evolve a multi-functional co-chaperone that functions with Hsc70 to promote lytic infection.IMPORTANCEViruses have evolved a variety of strategies to succeed in a hostile environment. The HSV immediate early protein ICP22 plays several roles in the virus life cycle including down-regulation of cellular gene expression, up-regulation of late viral gene expression, inhibition of apoptosis, prevention of aggregation of non-native proteins and the recruitment of a cellular heat shock protein, Hsc70, to nuclear domains. We present evidence that ICP22 resembles a cellular J-protein/HSP40 family co-chaperone, interacting specifically with Hsc70. This is the first known example of the acquisition of a complete J-like protein by a virus and suggests that HSV has evolved to manipulate the host proteostatic machinery during the establishment of lytic infection.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3