Oligomerization of ICP4 and Rearrangement of Heat Shock Proteins May Be Important for Herpes Simplex Virus Type 1 Prereplicative Site Formation

Author:

Livingston Christine M.1,DeLuca Neal A.2,Wilkinson Dianna E.3,Weller Sandra K.1

Affiliation:

1. Department of Molecular, Microbial and Structural Biology and The Molecular Biology and Biochemistry Graduate Program, The University of Connecticut Health Center, Farmington, Connecticut

2. Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, Pennsylvania

3. Division of Virology, National Institute for Biological Standards and Control, Hertsfordshire, United Kingdom

Abstract

ABSTRACT Herpes simplex virus type 1 (HSV-1) DNA replication occurs in replication compartments that form in the nucleus by an ordered process involving a series of protein scaffold intermediates. Following entry of viral genomes into the nucleus, nucleoprotein complexes containing ICP4 can be detected at a position adjacent to nuclear domain 10 (ND10)-like bodies. ND10s are then disrupted by the viral E3 ubiquitin ligase ICP0. We have previously reported that after the dissociation of ND10-like bodies, ICP8 could be observed in a diffuse staining pattern; however, using more sensitive staining methods, we now report that in addition to diffuse staining, ICP8 can be detected in tiny foci adjacent to ICP4 foci. ICP8 microfoci contain UL9 and components of the helicase-primase complex. HSV infection also results in the reorganization of the heat shock cognate protein 70 (Hsc70) and the 20S proteasome into virus-induced chaperone-enriched (VICE) domains. In this report we show that VICE domains are distinct but adjacent to the ICP4 nucleoprotein complexes and the ICP8 microfoci. In cells infected with an ICP4 mutant virus encoding a mutant protein that cannot oligomerize on DNA, ICP8 microfoci are not detected; however, VICE domains could still be formed. These results suggest that oligomerization of ICP4 on viral DNA may be essential for the formation of ICP8 microfoci but not for the reorganization of host cell chaperones into VICE domains.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3