The relationship between microbial population size and disease in the Arabidopsis thaliana phyllosphere

Author:

Karasov Talia L.ORCID,Neumann ManuelaORCID,Duque-Jaramillo AlejandraORCID,Kersten SonjaORCID,Bezrukov IljaORCID,Schröppel Birgit,Symeonidi EfthymiaORCID,Lundberg Derek S.ORCID,Regalado JulianORCID,Shirsekar GautamORCID,Bergelson JoyORCID,Weigel DetlefORCID

Abstract

AbstractA central goal in microbiome research is to learn what distinguishes a healthy from a dysbiotic microbial community. Shifts in diversity and taxonomic composition are important indicators of dysbiosis, but a full understanding also requires knowledge of absolute microbial population sizes. In addition to the number of microbial cells, information on taxonomic composition can provide important insight into microbiome function and disease state. Here we use shotgun metagenomics to simultaneously assess microbiome composition and microbial load in the phyllosphere of wild populations of the plant Arabidopsis thaliana. We find that wild plants vary substantially in the load of colonizing microbes, and that high loads are typically associated with the proliferation of single taxa, with only a few putatively pathogenic taxa achieving high abundances in the field. Our results suggest (i) that the inside of a plant leaf is on average sparsely colonized with an estimated two bacterial genomes per plant genome and an order of magnitude fewer eukaryotic microbial genomes, and (ii) that higher levels of microbial cells often indicate successful colonization by pathogens. Lastly, our results show that load is a significant explanatory variable for loss of estimated Shannon diversity in phyllosphere microbiomes, implying that reduced diversity may be a significant predictor of microbial dysbiosis in a plant leaf.

Publisher

Cold Spring Harbor Laboratory

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3