White Matter Microstructural Alteration in Type 2 Diabetes: A Combined UK Biobank Study of Diffusion Tensor Imaging and Neurite Orientation Dispersion and Density Imaging

Author:

Alotaibi Abdulmajeed,Podlasek Anna,AlTokhis Amjad,Tench Chris R.,Mohammadi-Nejad Ali-Reza,Sotiropoulos Stamatios N.,Constantinescu Cris S.,Lee Sieun,Dineen Rob A.

Abstract

AbstractBackgroundType 2 diabetes mellitus impacts the brain microstructural environment. Diffusion tensor imaging (DTI) has been widely used to characterize white matter microstructural abnormalities in type 2 diabetes but fails to fully characterise disease effects on complex white matter tracts. Neurite orientation dispersion and density imaging (NODDI) has been proposed as an alternative to DTI with higher specificity to characterize white matter microstructures. Although NODDI has not been widely applied in diabetes, this biophysical model has the potential to investigate microstructural changes in white matter pathology.Aims and objectives(1) To investigate brain white matter alterations in people with type 2 diabetes using DTI and NODDI; (2) To assess the association between white matter changes in type 2 diabetes with disease duration and diabetes control as reflected by glycated haemoglobin (HbA1c) levels.MethodsWe examined white matter microstructure in 48 white matter tracts using data from the UK Biobank in 3,338 participants with type 2 diabetes (36% women, mean age 66 years) and 30,329 participants without type 2 diabetes (53% women, mean age 64 years). The participants had undergone 3.0T multiparametric brain imaging, including T1 weighted imaging and diffusion imaging for DTI and NODDI. Region of interest analysis of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), orientation dispersion index (ODI), intracellular volume fraction (ICVF), and isotropic water fraction (IsoVF) were conducted to assess white matter abnormalities. A general linear model was applied to evaluate intergroup white matter differences and their association with the metabolic profile.ResultReduced FA and ICVF and increased MD, AD, RD, ODI, and IsoVF values were observed in participants with type 2 diabetes compared to non-type 2 diabetes participants (P<0.05). Reduced FA and ICVF in most white matter tracts were associated with longer disease duration and higher levels of HbA1c (0< r ≤0.2, P<0.05). Increased MD, AD, RD, ODI and IsoVF also correlated with longer disease duration and higher HbA1c (0< r ≤0.2, P<0.05).DiscussionNODDI detected microstructural changes in brain white matter in participants with type 2 diabetes. The revealed abnormalities are proxies for lower neurite density and loss of fibre orientation coherence, which correlated with longer disease duration and an index of poorly controlled blood sugar. NODDI contributed to DTI in capturing white matter differences in participants with type 2 diabetes, suggesting the feasibility of NODDI in detecting white matter alterations in type 2 diabetes.ConclusionType 2 diabetes can cause white matter microstructural abnormalities that have associations with glucose control. The NODDI diffusion model allows the characterisation of white matter neuroaxonal pathology in type 2 diabetes, giving biophysical information for understanding the impact of type 2 diabetes on brain microstructure.

Publisher

Cold Spring Harbor Laboratory

Reference53 articles.

1. Global and societal implications of the diabetes epidemic;Nat. 2001 4146865,2001

2. Epidemiology of Type 2 diabetes - Global burden of disease and forecasted trends;J. Epidemiol. Glob. Health,2020

3. Type 2 diabetes

4. Investigating Brain Microstructural Alterations in Type 1 and Type 2 Diabetes Using Diffusion Tensor Imaging: A Systematic Review

5. Obese Adolescents with Type 2 Diabetes Mellitus Have Hippocampal and Frontal Lobe Volume Reductions;Neurosci. Med,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3