TransferGWAS of T1-weighted Brain MRI Data from the UK Biobank

Author:

Rakowski AlexanderORCID,Monti RemoORCID,Lippert ChristophORCID

Abstract

AbstractGenome-wide association studies (GWAS) traditionally analyze single traits, e.g., disease diagnoses or biomarkers. Nowadays, large-scale cohorts such as the UK Biobank (UKB) collect imaging data with sample sizes large enough to perform genetic association testing. Typical approaches to GWAS on high-dimensional modalities extract predefined features from the data, e.g., volumes of regions of interest. This limits the scope of such studies to predefined traits and can ignore novel patterns present in the data. TransferGWAS employs deep neural networks (DNNs) to extract low-dimensional representations of imaging data for GWAS, eliminating the need for predefined biomarkers. Here, we apply transferGWAS on brain MRI data from the UKB. We encoded 36, 311 T1-weighted brain magnetic resonance imaging (MRI) scans using DNN models trained on MRI scans from the Alzheimer’s Disease Neuroimaging Initiative, and on natural images from the ImageNet dataset, and performed a multivariate GWAS on the resulting features. Furthermore, we fitted polygenic scores (PGS) of the deep features and computed genetic correlations between them and a range of selected phenotypes. We identified 289 independent loci, associated mostly with bone density, brain, or cardiovascular traits, and 14 regions having no previously reported associations. We evaluated the PGS in a multi-PGS setting, improving predictions of several traits. By examining clusters of genetic correlations, we found novel links between diffusion MRI traits and type 2 diabetes.1Author SummaryGenome-wide association studies are a popular framework for identifying regions in the genome influencing a trait of interest. At the same time, the growing sample sizes of medical imaging datasets allow for their incorporation into such studies. However, due to high dimensionalities of imaging modalities, association testing cannot be performed directly on the raw data. Instead, one would extract a set of measurements from the images, typically using predefined algorithms, which has several drawbacks - it requires specialized software, which might not be available for new or less popular modalities, and can ignore features in the data, if they have not yet been defined. An alternative approach is to extract the features using pretrained deep neural network models, which are well suited for complex high-dimensional data and have the potential to uncover patterns not easily discoverable by manual human analysis. Here, we extracted deep feature representations of brain MRI scans from the UK Biobank, and performed a genome-wide association study on them. Besides identifying genetic regions with previously reported associations with brain phenotypes, we found novel regions, as well as ones related to several other traits such as bone mineral density or cardiovascular traits.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3