Characterising replisome disassembly in human cells

Author:

Jones Rebecca M.,Ruiz Joaquin Herrero,Scaramuzza Shaun,Nath Sarmi,Henklewska Marta,Natsume Toyoaki,Romero Francisco,Kanemaki Masato T.ORCID,Gambus AgnieszkaORCID

Abstract

AbstractTo ensure faultless duplication of the entire genome, eukaryotic replication initiates from thousands of replication origins. Replication forks emanating from origins move through the chromatin until they encounter forks from neighbouring origins, at which point they terminate. In the final stages of this process the replication machinery (replisome) is unloaded from chromatin and disassembled. Work from model organisms has elucidated that during replisome unloading, the MCM7 subunit of the terminated replicative helicase is polyubiquitylated and processed by p97/VCP segregase, leading to disassembly of the helicase and the replisome, which is built around it. In higher eukaryotes (worms, frogs, mouse embryonic stem cells), MCM7 ubiquitylation is driven by a Cullin2-based ubiquitin ligase, with LRR1 as a substrate receptor. To date, most of our knowledge of replication termination comes from model organisms and embryonic systems and little is known about how this process is executed and regulated in human somatic cells. Here we thus established methods to study replisome disassembly in human model cell lines. Using flow cytometry, immunofluorescence microscopy and chromatin isolation with western blotting, we can visualise unloading of the replisome (MCM7 and CDC45) from chromatin by the end of S-phase. We observe interaction of replicative helicase (CMG complex) with CUL2LRR1 and ubiquitylation of MCM7 on chromatin, specifically in S-phase, suggesting that this is a replication-dependent modification. Importantly, we are able to show that replisome disassembly in this system also requires Cullin2, LRR1 and p97, demonstrating conservation of the mechanism. Moreover, we present evidence that the back-up mitotic replisome disassembly pathway is also recapitulated in human somatic cells. Finally, while we find that treatment with small molecule inhibitors against cullin-based ubiquitin ligases (CULi) and p97 (p97i) does lead to phenotypes of replisome disassembly defects, they also both lead to induction of replication stress in somatic cells, which limits their usefulness as tools to specifically target replisome disassembly processes in this setting.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3