Abstract
AbstractOmicron BA.1 variant isolates were previously shown to replicate less effectively in interferon-competent cells and to be more sensitive to interferon treatment than a Delta isolate. Here, an Omicron BA.2 isolate displayed intermediate replication patterns in interferon-competent Caco-2-F03 cells when compared to BA.1 and Delta isolates. Moreover, BA.2 was less sensitive than BA.1 and similarly sensitive as Delta to betaferon treatment. Delta and BA.1 displayed similar sensitivity to the approved anti-SARS-CoV-2 drugs remdesivir, nirmatrelvir, EIDD-1931 (the active metabolite of molnupiravir) and the protease inhibitor aprotinin, whereas BA.2 was less sensitive than Delta and BA.1 to EIDD-1931, nirmatrelvir and aprotinin. Nirmatrelvir, EIDD-1931, and aprotinin (but not remdesivir) exerted synergistic antiviral activity in combination with betaferon, with some differences in the extent of synergism detected between the different SARS-CoV-2 variants. In conclusion, even closely related SARS-CoV-2 (sub)variants can differ in their biology and in their response to antiviral treatments. Betaferon combinations with nirmatrelvir and, in particular, with EIDD-1931 and aprotinin displayed high levels of synergism, which makes them strong candidates for clinical testing. Notably, effective antiviral combination therapies are desirable, as a higher efficacy is expected to reduce resistance formation.
Publisher
Cold Spring Harbor Laboratory