EXORIBONUCLEASE4 integrates metabolic signals induced by osmotic stress into the circadian system

Author:

Prasetyaningrum Putri,Litthauer Suzanne,Vegliani Franco,Wood Matthew William,Battle Martin William,Dickson Cathryn,Jones Matthew AlanORCID

Abstract

AbstractThe circadian clock system acts as an endogenous timing reference that coordinates many metabolic and physiological processes in plants. Previous studies have shown that the application of osmotic stress delays circadian rhythms via 3’-Phospho-Adenosine 5’-Phosphate (PAP), a retrograde signalling metabolite that is produced in response to redox stress within organelles. PAP accumulation leads to the inhibition of EXORIBONUCLEASEs (XRNs), which are responsible for RNA degradation. Interestingly, we are now able to demonstrate that post-transcriptional processing is crucial for the circadian response to osmotic stress. Our data show that degradation of specific circadian clock transcripts is modulated by osmotic stress, suggesting that RNA metabolism plays a vital role in circadian clock coordination during drought. Inactivation of XRN4 is sufficient to extend circadian rhythms, with LWD1, LWD2, and PRR7 identified as specific XRN4 targets that are post-transcriptionally regulated to delay circadian progression.One Sentence SummaryPost-transcriptional regulation of specific transcripts enables the circadian system to respond to osmotic stress.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3