Antigen binding kinetics are quite different for B-cell receptors and free antibodies

Author:

García-Sánchez MiguelORCID,Castro MarioORCID,Faro JoséORCID

Abstract

Since the pioneering works of Berg and Purcell, discriminating between diffusion followed by binding has played a central role in understanding cell signaling. B-cell receptors (BCR) and antibodies (Ab) challenge that simplified view as binding to antigen follows after a chain of diffusion and rotations, including whole molecule rotation, and independent tilts and twists of their Fab arms due to their Y-shaped structure and flexibility. In this paper, we combine analytical calculations with Brownian simulations to derive the first-passage times due to these three rotations positioning the Fab paratopes at a proper distance and orientation required for antigen binding. Applying these estimations and those for 2-dimensional (2D) and 3D translational diffusion of, respectively, BCRs and Abs, we evidence that measuring Ab-Ag effective kinetic binding rates using experimental methods in which the analyte is in solution gives values proportional to the intrinsic binding rates,k+andk, only for values ofk+up to 109s−1, beyond which a plateau of the effective 3D on rate between 108M−1s−1and 109M−1s−1is attained. Moreover, for BCR-Ag interactions, the effective 2D on and off binding rates can be inferred from the corresponding effective 3D on and off rates only for values of effective 3D on rates lower than 106M−1s−1. This is highly relevant when one seeks to relate BCR-antigen binding strength and B cell response, particularly during germinal center reactions. Thus, there is an urgent need to revisit our current understanding of the BCR-antigen kinetic rates in germinal centers using state-of-the-art experimental assays for BCR-Ag interactions.Significance StatementIn germinal centers, binding between BCRs and antigen (Ag) tethered on the membrane of follicular dendritic cells occurs via two-dimensional (2D) membrane-to-membrane interactions. In contrast, inin vitroassays antibody (Ab)-antigen interactions occur with one component in solution. Structurally, there are large qualitative and quantitative differences between BCR-Ag 2D and Ab-Ag 3D translational and rotational diffusion processes, with the 2D translational diffusion being about 1000-fold lower than the 3D one. Moreover, the effective binding kinetics of both BCR-Ag and Ab-Ag interactions strongly deviate from the intrinsic molecular on and off rates. Here we expose this mismatch and, performing numerical and analytical calculations, quantify the ranges for which the experimental in-vitro data is informative on the BCR-Ag binding strength.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3