Flexibility of human IgG subclasses.

Author:

Roux K H1,Strelets L1,Michaelsen T E1

Affiliation:

1. Department of Biological Science, Structural Biology Program, Florida State University, Tallahassee 32306, USA. roux@bio.fsu.edu

Abstract

Abstract A variable region (Id)-matched set of genetically engineered human IgG1, -2, -3, and -4 subclass molecules was analyzed by electron microscopy for hinge-mediated differences in flexibility. The hinge-mediated bending was studied, as was the ability of the subclasses to form immune complexes with two anti-Id mAbs. The data show that the rank order (most to least flexible) of the IgG subclasses for hinge-folding mode of flexibility between Fab arms is IgG3 > IgG1 > IgG4 > IgG2. The mean Fab-Fab angles for the subclasses are IgG3, 136 degrees; IgG4, 128 degrees; IgG2, 127 degrees; and IgG1, 117 degrees. Fab-Fc angles were similarly analyzed. By sampling of equimolar mixtures of Id-bearing IgGs and each of two anti-Id mAb after incubation over time (1.5 min to 3.5 h), different kinetic profiles of immune complex formation of defined geometry were documented. Both anti-Id mAbs displayed unique kinetic profiles when complexed with the four IgG subclass molecules but also shared important features. Most notable was the higher propensity to form closed bivalent ring Id-anti-Id dimers with IgG3 than with IgG2 and IgG4. IgG1 was intermediate in its ability to form such dimers.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3