Turnover shapes evolution of birth and death rates

Author:

Kuosmanen TeemuORCID,Särkkä Simo,Mustonen VilleORCID

Abstract

Population turnover, a key trait shaped by the organism’s life history strategy, plays an important role in eco-evolutionary dynamics by fixing the timescale for individual birth and death events as well as in determining the level of demographic stochasticity related to growth. Yet, the standard theory of population genetics, and the models heavily used in the related data analysis, have largely ignored the role of turnover. Here we propose a reformulation of population genetics starting from the first principles of birth and death and show that the role of turnover is evolutionarily important. We derive a general stochastic differential equation for the frequency dynamics of competing birth-death processes and determine the appropriate turnover corrections for the essential results regarding fixation, establishment, and substitution of mutants. Our results reveal how both the absolute and relative turnover rates influence evolution. We further describe a deterministic turnover selection, the turnover flux, which operates in small populations. Finally, we analyse the evolution of mean turnover and show how it explains the key eco-evolutionary mechanisms underlying demographic transitions. In conclusion, our results explicitly show how competing life-history strategies, demographic stochasticity, ecological feedback, and evolution are inseparably intertwined, thus calling for a unified theory development starting from the underlying mechanisms of birth and death.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3