Eco-evolutionary dynamics for finite populations and the noise-induced reversal of selection

Author:

Bhat Ananda ShikharaORCID,Guttal VishweshaORCID

Abstract

AbstractTheoretical studies from diverse areas of population biology have shown that demographic stochasticity can substantially impact evolutionary dynamics in finite populations, including scenarios where traits that are disfavored by natural selection can nevertheless increase in frequency through the course of evolution. Here, we analytically describe the eco-evolutionary dynamics of finite populations from demographic first principles to investigate how noise-induced effects can alter the evolutionary fate of populations in which total population size may vary stochastically over time. Starting from a generic birth-death process describing a finite population of individuals with discrete traits, we derive a set of stochastic differential equations (SDEs) that recover well-known descriptions of evolutionary dynamics such as the replicator-mutator equation, the Price equation, and Fisher’s fundamental theorem in the infinite population limit. For finite populations, our SDEs reveal how stochasticity can predictably bias evolutionary trajectories to favour certain traits, a phenomenon we call ‘noise-induced biasing’. We show that noise-induced biasing acts through two distinct mechanisms that we call the ‘direct’ and ‘indirect’ mechanisms. While the direct mechanism can be identified with classic bet-hedging theory, the indirect mechanism is a more subtle consequence of frequency and density-dependent demographic stochasticity. Our equations reveal that noise-induced biasing may lead to evolution proceeding in a direction opposite to that predicted by natural selection in the infinite population limit. By extending and generalizing some standard equations of population genetics, we thus describe how demographic stochasticity appears alongside and interacts with the more well-understood forces of natural selection and neutral drift to determine the eco-evolutionary dynamics of finite populations of non-constant size.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3