Molecular dynamics analysis of fast-spreading severe acute respiratory syndrome coronavirus 2 variants and their effects in the interaction with human angiotensin-converting enzyme 2

Author:

de Souza Anacleto Silva,de Freitas Amorim Vitor Martins,Guardia Gabriela D A,dos Santos Felipe R C,dos Santos Filipe F,de Souza Robson Francisco,de Araujo Juvenal Guilherme,Huang Yihua,Ge Pingju,Jiang Yinan,Paudel Prajwal,Ulrich Henning,Galante Pedro A F,Guzzo Cristiane RodriguesORCID

Abstract

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is evolving with mutations in the Spike protein, especially in the receptor-binding domain (RBD). The failure of public health measures to contain the spread of the disease in many countries has given rise to novel viral variants with increased transmissibility. However, key questions about how quickly the variants can spread and whether they can cause a more severe disease remain unclear. Herein, we performed a structural investigation using molecular dynamics simulations and determined dissociation constant (KD) values using surface plasmon resonance (SPR) assays of three fastspreading SARS-CoV-2 variants, Alpha, Beta and Gamma ones, as well as genetic factors in the host cells that may be related to the viral infection. Our results suggest that the SARS-CoV-2 variants facilitate their entry into the host cell by moderately increased binding affinities to the human ACE2 receptor, different torsions in hACE2 mediated by RBD variants, and an increased Spike exposure time to proteolytic enzymes. We also found that other host cell aspects, such as gene and isoform expression of key genes for the infection (ACE2, FURIN and TMPRSS2), may have few contributions to the SARS-CoV-2 variants infectivity. In summary, we concluded that a combination of viral and host cell factors allows SARS-CoV-2 variants to increase their abilities to spread faster than wild-type.Abstract Figure

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3