Cooperative and structural relationships of the trimeric Spike with infectivity and antibody escape of the strains Delta (B.1.617.2) and Omicron (BA.2, BA.5, and BQ.1)

Author:

Souza Anacleto Silva de,Souza Robson Francisco de,Guzzo Cristiane Rodrigues

Abstract

AbstractHerein, we simulated the trimeric Spike of the variants B.1.617.2, BA.2, BA.5 and BQ.1 for 300 ns. We derived mechanisms by which the substitutions K417N, L452R, N444T and N460K may favor resistance to neutralizing antibodies. The K417N and L452R contribute to the expansion of the networks of hydrogen bonding interactions with neighboring residues, decreasing their capacity to interact with neutralizing antibodies. The SpikeBQ.1possesses two unique K444T and N460K mutations that expand the network of hydrogen bonding interactions. This lysine also contributes one novel strong saline interaction and both substitutions may favor resistance to neutralizing antibodies. We also investigated how the substitutions D614G, P681R, and P681H impact Spike structural conformations and discuss the impact of these changes to infectivity and lethality. The prevalent D614G substitution plays a key role in the communication between the glycine and the residues of a β-strand located between the NTD and the RBD, impacting the transition between up- and down-RBD states. The P681R mutation, found in the Delta variant, favors intra- and inter-protomer correlations between the subunits S1 and S2. Conversely, in Omicron sub-variants, P681H decreases the intra- and inter-protomer long-range interactions within the trimeric Spike, providing an explanation for the reduced fusogenicity of this variant. Taken together, our results enhance the knowledge on how novel mutations lead to changes in infectivity and reveal mechanisms by which SARS-CoV-2 may evade the immune system.

Publisher

Cold Spring Harbor Laboratory

Reference79 articles.

1. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers;In SoftwareX,2015

2. The effect of the D614G substitution on the structure of the spike glycoprotein of SARS-CoV-2;Proceedings of the National Academy of Sciences of the United States of America,2021

3. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology;Scientific Reports,2017

4. The SWISS-MODEL Repository—new features and functionality;Nucleic Acids Research,2016

5. Cathepsin L Functionally Cleaves the Severe Acute Respiratory Syndrome Coronavirus Class I Fusion Protein Upstream of Rather than Adjacent to the Fusion Peptide

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3