Oleate metabolism using kinetic 13C dilution strategy deciphered the potential role of global transcription regulator arcA in Escherichia coli

Author:

Jindal Shikha,Jyoti Poonam,Venkatesh K.V.,Masakapalli Shyam KumarORCID

Abstract

AbstractMicrobial metabolism of long-chain fatty acids (LCFA; > C12) is of relevance owing to their presence in various nutrient niches. Microbes have evolved to metabolize LCFA by expressing relevant genes coordinated by various transcriptional regulators. Among the global transcriptional regulators, the metabolic control conferred by arcA (aerobic respiration control) under a LCFA medium is lacking. This work is targeted to unravel the metabolic features of E.coli MG1655 and its knockout strain ΔarcA under oleate (C18:1) as a sole carbon source, providing novel insights into the flexibility of the global regulators in maintaining the cellular physiology. Owing to the availability and cost of stable isotope LCFA tracers, we adopted a novel kinetic 13C dilution strategy. This allowed us to quantify the 13C dilution rates in the amino acids that retro-biosynthetically shed light on the central metabolic pathways in actively growing cells. Our data comprehensively mapped oleate oxidization in E.coli via the pathways of β-oxidation, TCA cycle, anaplerotic and gluconeogenesis. Interestingly, arcA knockout showed expeditious growth (~60%) along with an increased oleate utilization rate (~55%) relative to the wild-type. ΔarcA also exhibited higher 13C dilution rates (> 20%) in proteinogenic amino acids than the wild-type. Overall, the study established the de-repression effect conferred by ΔarcA in E.coli, which resulted in a phenotype with reprogrammed metabolism favouring higher oleate assimilation. The outcomes suggest rational metabolic engineering of regulators as a strategy to develop smart cells for enhanced biotransformation of LCFA. This study also opens an avenue for adopting a kinetic 13C dilution strategy to decipher the cellular metabolism of a plethora of substrates, including other LCFA in microbes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3