Atlantic salmon farms are a likely source of Tenacibaculum maritimum infection in migratory Fraser River sockeye salmon

Author:

Bateman Andrew W.ORCID,Teffer Amy K.,Bass Arthur,Ming Tobi,Hunt Brian P. V.,Krkošek Martin,Miller Kristina M.

Abstract

AbstractInfectious disease from domestic hosts, held for agriculture, can impact wild species that migrate in close proximity, potentially reversing selective advantages afforded by migration. For sockeye salmon in British Columbia, Canada, juveniles migrate past numerous Atlantic salmon farms from which they may acquire a number of infectious agents. We analyse patterns of molecular detection in juvenile sockeye salmon for one bacterial pathogen, Tenacibaculum maritimum, known to cause disease in fish species around the globe and to cause mouthrot disease in farmed Atlantic salmon in BC. Our data show a clear peak in T. maritimum detections in the Discovery Islands region of BC, where sockeye migrate close to salmon farms. Using well established differential-equation models to describe sockeye migration and T. maritimum infection spread, we fit models to our detection data to assess support for multiple hypotheses describing farm- and background-origin infection. Despite a data-constrained inability to resolve certain epidemiological features of the system, such as the relative roles of post infection mortality and recovery, our models clearly support the role of Discovery-Islands salmon farms in producing the observed patterns. Our best models (with 99.8% empirical model support) describe relatively constant (background) infection pressure, except around Discovery-Islands salmon farms, where farm-origin infection pressure peaked at 12.7 (approximate 95% CI: 4.5 to 31) times background levels. Given the evidence for farm-origin transfer of T. maritimum to Fraser-River sockeye salmon, the severity of associated disease in related species, and the imperilled nature of Fraser River sockeye generally, our results suggest the need for a more precautionary approach to managing farm/wild interactions in sockeye salmon.

Publisher

Cold Spring Harbor Laboratory

Reference78 articles.

1. Akaike, H . 1973. Information theory and an extension of the maximum likelihood principle. Pages 268–281 in B. N. Petrov and F. Csaki , eds. Second International Symposium on Information Theory. Akadémiai Kiadó, Budapest.

2. Animal Migration and Infectious Disease Risk

3. Tenacibaculosis infection in marine fish caused by Tenacibaculum maritimum: a review

4. Bakke, T. A. , and P. D. Harris . 1998. Diseases and parasites in wild Atlantic salmon (Salmo salar) populations 55:20.

5. In situ experimental evaluation of tag burden and gill biopsy reveals survival impacts on migrating juvenile sockeye salmon;Canadian Journal of Fisheries and Aquatic Sciences,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3