Fungal gasdermin-like proteins are controlled by proteolytic cleavage

Author:

Clavé Corinne,Dyrka Witold,Granger-Farbos Alexandra,Pinson Benoît,Saupe Sven J.,Daskalov Asen

Abstract

AbstractGasdermins are a family of pore-forming proteins controlling an inflammatory cell death reaction in the mammalian immune system. The pore-forming ability of the gasdermin proteins is released by proteolytic cleavage with the removal of their inhibitory C-terminal domain. Recently, gasdermin-like proteins have been discovered in fungi and characterized as cell death-inducing toxins in the context of conspecific non-self discrimination (allorecognition). Although functional analogies have been established between mammalian and fungal gasdermins, the molecular pathways regulating gasdermin activity in fungi remain largely unknown. Here, we characterize a gasdermin-based cell death reaction, controlled by the het-Q allorecognition genes in the filamentous fungus Podospora anserina. We show that the cytotoxic activity of the HET-Q1 gasdermin is controlled by proteolysis. HET-Q1 loses a ∼5 kDa C-terminal fragment during the cell death reaction in presence of a subtilisin-like serine protease, termed HET-Q2. Mutational analyses and successful reconstitution of the cell death reaction in a heterologous host (Saccharomyces cerevisiae) suggest that HET-Q2 directly cleaves HET-Q1 to induce cell death. By analysing the genomic landscape of het-Q1 homologs in fungi, we uncovered that the vast majority of the gasdermin genes are clustered with protease-encoding genes. These HET-Q2-like proteins carry either subtilisin-like or caspase-related proteases, which in some cases correspond to the N-terminal effector domain of NOD-like receptor proteins (NLRs). This study thus reveals the proteolytic regulation of gasdermins in fungi and establishes evolutionary parallels between fungal and mammalian gasdermin-dependent cell death pathways.SignificanceThe recent discovery of gasdermin-like proteins in fungi have brought to light that this family of pore-forming proteins controls cell death in two of the major eukaryotic kingdoms, fungi and mammals. Yet, the regulation of cytotoxicity of the fungal gasdermins and their molecular pathways remain uncharacterized. Here, we describe the regulation through proteolytic cleavage of the fungal gasdermin HET-Q1 and uncover that majority of fungal gasdermins are genomically clustered with protease-encoding genes. Some of these genes encode proteins with caspase-related domains and/or are members of a family of immune receptors in mammals and plants. Overall, this work contributes towards our understanding of the evolution of gasdermin-dependent cell death, enlightening multiple evolutionary parallels between signaling pathways in mammals and fungi.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3