Molecular Genetics of Heterokaryon Incompatibility in Filamentous Ascomycetes

Author:

Saupe Sven J.1

Affiliation:

1. Laboratoire de Génétique Moléculaire des Champignons, IBGC UMR CNRS 5095, 33077 Bordeaux Cedex, France

Abstract

SUMMARY Filamentous fungi spontaneously undergo vegetative cell fusion events within but also between individuals. These cell fusions (anastomoses) lead to cytoplasmic mixing and to the formation of vegetative heterokaryons (i.e., cells containing different nuclear types). The viability of these heterokaryons is genetically controlled by specific loci termed het loci (for heterokaryon incompatibility). Heterokaryotic cells formed between individuals of unlike het genotypes undergo a characteristic cell death reaction or else are severely inhibited in their growth. The biological significance of this phenomenon remains a puzzle. Heterokaryon incompatibility genes have been proposed to represent a vegetative self/nonself recognition system preventing heterokaryon formation between unlike individuals to limit horizontal transfer of cytoplasmic infectious elements. Molecular characterization of het genes and of genes participating in the incompatibility reaction has been achieved for two ascomycetes, Neurospora crassa and Podospora anserina. These analyses have shown that het genes are diverse in sequence and do not belong to a gene family and that at least some of them perform cellular functions in addition to their role in incompatibility. Divergence between the different allelic forms of a het gene is generally extensive, but single-amino-acid differences can be sufficient to trigger incompatibility. In some instances het gene evolution appears to be driven by positive selection, which suggests that the het genes indeed represent recognition systems. However, work on nonallelic incompatibility systems in P. anserina suggests that incompatibility might represent an accidental activation of a cellular system controlling adaptation to starvation.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology,Infectious Diseases

Cited by 284 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3