Abstract
AbstractThe coronavirus SARS-CoV-2 caused the COVID-19 global pandemic leading to 3.5 million deaths worldwide as of June 2021. The human intestine was found to be a major viral target which could have a strong impact on virus spread and pathogenesis since it is one of the largest organs. While type I interferons (IFNs) are key cytokines acting against systemic virus spread, in the human intestine type III IFNs play a major role by restricting virus infection and dissemination without disturbing homeostasis. Recent studies showed that both type I and III IFNs can inhibit SARS-CoV-2 infection, but it is not clear if one IFN controls SARS-CoV-2 infection of the human intestine better or with a faster kinetics. In this study, we could show that both type I and III IFNs possess antiviral activity against SARS-CoV-2 in human intestinal epithelial cells (hIECs), however type III IFN is more potent. Shorter type III IFN pretreatment times and lower concentrations were required to efficiently reduce virus load when compared to type I IFNs. Moreover, type III IFNs significantly inhibited SARS-CoV-2 even 4 hours post-infection and induced a long-lasting antiviral effect in hIECs. Importantly, the sensitivity of SARS-CoV-2 to type III IFNs was virus-specific since type III IFN did not control VSV infection as efficiently. Together these results suggest that type III IFNs have a higher potential for IFN-based treatment of SARS-CoV-2 intestinal infection as compared to type I IFNs.
Publisher
Cold Spring Harbor Laboratory