Common and rare variant analyses combined with single-cell multiomics reveal cell-type-specific molecular mechanisms of COVID-19 severity

Author:

Zhang Sai,Cooper-Knock Johnathan,Weimer Annika K.,Harvey Calum,Julian Thomas H.,Wang Cheng,Li Jingjing,Furini Simone,Frullanti Elisa,Fava Francesca,Renieri Alessandra,Pan Cuiping,Song Jina,Billing-Ross Paul,Gao Peng,Shen Xiaotao,Timpanaro Ilia Sarah,Kenna Kevin P.,Davis Mark M.,Tsao Philip S.,Snyder Michael P., ,

Abstract

ABSTRACTThe determinants of severe COVID-19 in non-elderly adults are poorly understood, which limits opportunities for early intervention and treatment. Here we present novel machine learning frameworks for identifying common and rare disease-associated genetic variation, which outperform conventional approaches. By integrating single-cell multiomics profiling of human lungs to link genetic signals to cell-type-specific functions, we have discovered and validated over 1,000 risk genes underlying severe COVID-19 across 19 cell types. Identified risk genes are overexpressed in healthy lungs but relatively downregulated in severely diseased lungs. Genetic risk for severe COVID-19, within both common and rare variants, is particularly enriched in natural killer (NK) cells, which places these immune cells upstream in the pathogenesis of severe disease. Mendelian randomization indicates that failed NKG2D-mediated activation of NK cells leads to critical illness. Network analysis further links multiple pathways associated with NK cell activation, including type-I-interferon-mediated signalling, to severe COVID-19. Our rare variant model, PULSE, enables sensitive prediction of severe disease in non-elderly patients based on whole-exome sequencing; individualized predictions are accurate independent of age and sex, and are consistent across multiple populations and cohorts. Risk stratification based on exome sequencing has the potential to facilitate post-exposure prophylaxis in at-risk individuals, potentially based around augmentation of NK cell function. Overall, our study characterizes a comprehensive genetic landscape of COVID-19 severity and provides novel insights into the molecular mechanisms of severe disease, leading to new therapeutic targets and sensitive detection of at-risk individuals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3