Low expression of EXOSC2 protects against clinical COVID-19 and impedes SARS-CoV-2 replication

Author:

Moll Tobias,Odon Valerie,Harvey Calum,Collins Mark OORCID,Peden AndrewORCID,Franklin John,Graves Emily,Marshall Jack N.G.,Santos Souza Cleide dos,Zhang Sai,Azzouz Mimoun,Gordon David,Krogan Nevan,Ferraiuolo Laura,Snyder Michael P,Shaw Pamela J,Rehwinkel Jan,Cooper-Knock JohnathanORCID

Abstract

AbstractNew therapeutic targets are a valuable resource in the struggle to reduce the morbidity and mortality associated with the COVID-19 pandemic, caused by the SARS-CoV-2 virus. Genome-wide association studies (GWAS) have identified risk loci, but some loci are associated with co-morbidities and are not specific to host-virus interactions. Here, we identify and experimentally validate a link between reduced expression of EXOSC2 and reduced SARS-CoV-2 replication. EXOSC2 was one of 332 host proteins examined, all of which interact directly with SARS-CoV-2 proteins; EXOSC2 interacts with Nsp8 which forms part of the viral RNA polymerase. Lung-specific eQTLs were identified from GTEx (v7) for each of the 332 host proteins. Aggregating COVID-19 GWAS statistics for gene-specific eQTLs revealed an association between increased expression of EXOSC2 and higher risk of clinical COVID-19 which survived stringent multiple testing correction. EXOSC2 is a component of the RNA exosome and indeed, LC-MS/MS analysis of protein pulldowns demonstrated an interaction between the SARS-CoV-2 RNA polymerase and the majority of human RNA exosome components. CRISPR/Cas9 introduction of nonsense mutations within EXOSC2 in Calu-3 cells reduced EXOSC2 protein expression, impeded SARS-CoV-2 replication and upregulated oligoadenylate synthase (OAS) genes, which have been linked to a successful immune response against SARS-CoV-2. Reduced EXOSC2 expression did not reduce cellular viability. OAS gene expression changes occurred independent of infection and in the absence of significant upregulation of other interferon-stimulated genes (ISGs). Targeted depletion or functional inhibition of EXOSC2 may be a safe and effective strategy to protect at-risk individuals against clinical COVID-19.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3