Aspergillus fumigatus acetate utilisation impacts virulence traits and pathogenicity

Author:

Ries Laure Nicolas Annick,de Castro Patricia Alves,Silva Lilian Pereira,Valero Clara,dos Reis Thaila Fernanda,Saborano Raquel,Duarte Iola F.,Persinoti Gabriela Felix,Steenwyk Jacob L.ORCID,Rokas AntonisORCID,Almeida FaustoORCID,Costa Jonas HenriqueORCID,Fill Taicia,Wong Sarah Sze Wah,Aimanianda VishukumarORCID,Rodrigues Fernando José Santos,Gonçales Relber A.,Duarte-Oliveira Cláudio,Carvalho Agostinho,Goldman Gustavo H.ORCID

Abstract

AbstractAspergillus fumigatus is a major opportunistic fungal pathogen of immunocompromised and immunocompetent hosts. To successfully establish an infection, A. fumigatus needs to use host carbon sources, such as acetate, present in the body fluids and peripheral tissues. However, utilisation of acetate as a carbon source by fungi in the context of infection has not been investigated. This work shows that acetate is metabolised via different pathways in A. fumigatus and that acetate utilisation is under the regulatory control of a transcription factor (TF), FacB. A. fumigatus acetate utilisation is subject to carbon catabolite repression (CCR), although this is only partially dependent on the TF and main regulator of CCR CreA. The available extracellular carbon source, in this case glucose and acetate, significantly affected A. fumigatus virulence traits such as secondary metabolite secretion and cell wall composition, with the latter having consequences for resistance to oxidative stress, to anti-fungal drugs and to human neutrophil-mediated killing. Furthermore, deletion of facB significantly impaired the in vivo virulence of A. fumigatus in both insect and mammalian models of invasive aspergillosis. This is the first report on acetate utilisation in A. fumigatus and this work further highlights the importance of available host-specific carbon sources in shaping fungal virulence traits and subsequent disease outcome, and a potential target for the development of anti-fungal strategies.ImportanceAspergillus fumigatus is an opportunistic fungal pathogen in humans. During infection, A. fumigatus is predicted to use host carbon sources, such as acetate, present in body fluids and peripheral tissues, to sustain growth and promote colonisation and invasion. This work shows that A. fumigatus metabolises acetate via different pathways, a process that is dependent on the transcription factor FacB. Furthermore, the type and concentration of the extracellular available carbon source were determined to shape A. fumigatus virulence determinants such as secondary metabolite secretion and cell wall composition. Subsequently, interactions with immune cells are altered in a carbon source-specific manner. FacB is required for A. fumigatus in vivo virulence in both insect and mammalian models of invasive aspergillosis. This is the first report that characterises acetate utilisation in A. fumigatus and highlights the importance of available host-specific carbon sources in shaping virulence traits and potentially subsequent disease outcome.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Molecular regulation of fungal secondary metabolism;World Journal of Microbiology and Biotechnology;2023-05-20

2. Novel Treatment Approach for Aspergilloses by Targeting Germination;Journal of Fungi;2022-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3