Abstract
AbstractThe virtually error-free segmentation and tracking of densely packed cells and cell nuclei is still a challenging task. Especially in low-resolution and low signal-to-noise-ratio microscopy images erroneously merged and missing cells are common segmentation errors making the subsequent cell tracking even more difficult. In 2020, we successfully participated as team KIT-Sch-GE (1) in the 5th edition of the ISBI Cell Tracking Challenge. With our deep learning-based distance map regression segmentation and our graph-based cell tracking, we achieved multiple top 3 rankings on the diverse data sets. In this manuscript, we show how our approach can be further improved by using another optimizer and by fine-tuning training data augmentation parameters, learning rate schedules, and the training data representation. The fine-tuned segmentation in combination with an improved tracking enabled to further improve our performance in the 6th edition of the Cell Tracking Challenge 2021 as team KIT-Sch-GE (2).
Publisher
Cold Spring Harbor Laboratory
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献