On Improving an Already Competitive Segmentation Algorithm for the Cell Tracking Challenge - Lessons Learned

Author:

Scherr TimORCID,Löffler KatharinaORCID,Neumann Oliver,Mikut RalfORCID

Abstract

AbstractThe virtually error-free segmentation and tracking of densely packed cells and cell nuclei is still a challenging task. Especially in low-resolution and low signal-to-noise-ratio microscopy images erroneously merged and missing cells are common segmentation errors making the subsequent cell tracking even more difficult. In 2020, we successfully participated as team KIT-Sch-GE (1) in the 5th edition of the ISBI Cell Tracking Challenge. With our deep learning-based distance map regression segmentation and our graph-based cell tracking, we achieved multiple top 3 rankings on the diverse data sets. In this manuscript, we show how our approach can be further improved by using another optimizer and by fine-tuning training data augmentation parameters, learning rate schedules, and the training data representation. The fine-tuned segmentation in combination with an improved tracking enabled to further improve our performance in the 6th edition of the Cell Tracking Challenge 2021 as team KIT-Sch-GE (2).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3