A-type lamins are critical for the recruitment of RPA and RAD51 to stalled replication forks to maintain fork stability

Author:

Graziano SimonaORCID,Coll-Bonfill NuriaORCID,Teodoro-Castro Barbara,Kuppa SahitiORCID,Jackson Jessica,Shashkova ElenaORCID,Mahajan Urvashi,Vindigni AlessandroORCID,Antony EdwinORCID,Gonzalo SusanaORCID

Abstract

ABSTRACTLamins provide a nuclear scaffold for compartmentalization of genome function that is important for genome integrity. The mechanisms whereby lamins regulate genome stability remain poorly understood. Here, we demonstrate a crucial role for A-type lamins preserving the integrity of the replication fork (RF) during replication stress (RS). We find that lamins bind to nascent DNA strands, especially during RS, and ensure the recruitment of fork protective factors RPA and RAD51. These ssDNA-binding proteins, considered the first and second responders to RS respectively, play crucial roles in the stabilization, remodeling and repair of the stalled fork to ensure proper restart and genome stability. Reduced recruitment of RPA and RAD51 upon lamins depletion elicits replication fork instability (RFI) depicted by MRE11 nuclease-mediated degradation of nascent DNA, RS-induced accumulation of DNA damage, and increased sensitivity to replication inhibitors. Importantly, in contrast to cells deficient in various homology recombination repair proteins, the RFI phenotype of lamins-depleted cells is not linked to RF reversal. This suggests that the point of entry of nucleases is not the reversed fork, but regions of ssDNA generated during RS that are not protected by RPA and RAD51. Consistently, RFI in lamins-depleted cells is rescued by forced elevation of the heterotrimeric RPA complex or RAD51. These data unveil a clear involvement of structural nuclear proteins in the protection of ssDNA from the action of nucleases during RS by warranting proper recruitment of ssDNA binding proteins RPA and RAD51 to stalled RFs. In support of this model, we show physical interaction between RPA and lamins. Our study also suggests that RS is a major source of genomic instability in laminopathies and in lamins-depleted tumors.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3