A CRISPRi/a platform in iPSC-derived microglia uncovers regulators of disease states

Author:

Dräger Nina M.,Sattler Sydney M.,Huang Cindy Tzu-Ling,Teter Olivia M.,Leng Kun,Hashemi Sayed Hadi,Hong Jason,Clelland Claire D.,Zhan Lihong,Kodama Lay,Singleton Andrew B.,Nalls Mike A.,Ichida Justin,Ward Michael E.,Faghri Faraz,Gan Li,Kampmann MartinORCID

Abstract

ABSTRACTMicroglia are emerging as key drivers of neurological diseases. However, we lack a systematic understanding of the underlying mechanisms. Here, we present a screening platform to systematically elucidate functional consequences of genetic perturbations in human iPSC- derived microglia. We developed an efficient eight-day protocol for the generation of microglia-like cells based on the inducible expression of six transcription factors. We established inducible CRISPR interference and activation in this system and conducted three screens targeting the “druggable genome”. These screens uncovered genes controlling microglia survival, activation and phagocytosis, including neurodegeneration-associated genes. A screen with single-cell RNA sequencing as the readout revealed that these microglia adopt a spectrum of states mirroring those observed in human brains and identified regulators of these states. A disease-associated state characterized by SPP1 expression was selectively depleted by CSF1R inhibition. Thus, our platform can systematically uncover regulators of microglia states, enabling their functional characterization and therapeutic targeting.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3