Acentrosomal spindle assembly and stability in C. elegans oocytes requires a kinesin-12 non-motor microtubule interaction domain

Author:

Wolff Ian D.,Hollis Jeremy A.,Wignall Sarah M.ORCID

Abstract

SUMMARYDuring the meiotic divisions in oocytes, microtubules are sorted and organized by motor proteins to generate a bipolar spindle in the absence of centrosomes [1]. In most organisms, kinesin-5 family members crosslink and slide microtubules to generate outward force that promotes acentrosomal spindle bipolarity [2–7]. However, the mechanistic basis for how other kinesin families act on acentrosomal spindles has not been explored. We investigated this question in C. elegans oocytes, where kinesin-5 is not required to generate outward force [8]. Instead, the kinesin-12 family motor KLP-18 performs this function [9–12]. KLP-18 acts with adaptor protein MESP-1 (meiotic spindle 1) to sort microtubule minus ends to the periphery of a microtubule array, where they coalesce into spindle poles [12]. If either of these proteins is depleted, outward sorting of microtubules is lost and minus ends converge to form a monoaster. Here we use a combination of in vitro biochemical assays and in vivo mutant analysis to provide insight into the mechanism by which these proteins collaborate to promote acentrosomal spindle assembly. We identify a microtubule binding site on the C-terminal stalk of KLP-18 and demonstrate that a direct interaction between the KLP-18 stalk and MESP-1 activates non-motor microtubule binding. We also provide evidence that this C-terminal domain is required for KLP-18 activity during spindle assembly and show that KLP-18 is continuously required to maintain spindle bipolarity. This study thus provides new insight into the construction and maintenance of the oocyte acentrosomal spindle as well as into kinesin-12 mechanism and regulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3