Whole-cell cryo-electron tomography of cultured and primary eukaryotic cells on micropatterned TEM grids

Author:

Sibert Bryan S.,Kim Joseph Y.,Yang Jie E.,Wright Elizabeth R.ORCID

Abstract

ABSTRACTWhole-cell cryo-electron tomography (cryo-ET) is a powerful technique that can provide nanometer-level resolution of biological structures within the cellular context and in a near-native frozen-hydrated state. It remains a challenge to culture or adhere cells on TEM grids in a manner that is suitable for tomography while preserving the physiological state of the cells. Here, we demonstrate the versatility of micropatterning to direct and promote growth of both cultured and primary eukaryotic cells on TEM grids. We show that micropatterning is compatible with and can be used to enhance studies of host-pathogen interactions using respiratory syncytial virus infected BEAS-2B cells as an example. We demonstrate the ability to use whole-cell tomography of primary Drosophila neuronal cells to identify organelles and cytoskeletal stuctures in cellular axons and the potential for micropatterning to dramatically increase throughput for these studies. During micropatterning, cell growth is targeted by depositing extra-cellular matrix (ECM) proteins within specified patterns and positions on the foil of the TEM grid while the other areas remain coated with an anti-fouling layer. Flexibility in the choice of surface coating and pattern design make micropatterning broadly applicable for a wide range of cell types. Micropatterning is useful for studies of structures within individual cells as well as more complex experimental systems such as host-pathogen interactions or differentiated multi-cellular communities. Micropatterning may also be integrated into many downstream whole-cell cryo-ET workflows including correlative light and electron microscopy (cryo-CLEM) and focused-ion beam milling (FIB-SEM).

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3