Discharge prediction of critical patients with spinal cord injury: a machine learning study with 1485 cases

Author:

Fan Guoxin,Liu Huaqing,Yang Sheng,Luo Libo,Wang Lunji,Pang Mao,Liu Bin,Zhang Liangming,Han Lanqing,Rong LiminORCID

Abstract

AbstractObjectivesPrognostication of spinal cord injury (SCI) is vital, especially for critical patients who need intensive care. The study aims to develop machine-learning (ML) classifiers for discharge prediction of SCI patients in the intensive care unit (ICU).MethodsClinical data of patients diagnosed with SCI were extracted from the publicly available ICU database. A total of 105 ML classifiers were initially developed to predict the discharge destination (dead, further medical care, home), and then the top 3 classifiers with the best performance were stacked into an ensemble classifier (Esb-Clf). To balance the accuracy and the feasibility, the complete Esb-Clf was finally simplified with top 10 features (simplified Esb-Clf). The micro-average area under the curve (AUC) was used to compare the prediction performance of difference ML classifiers and 6 doctors’ artificial prediction.ResultsA total of 1485 SCI patients were used for the early and the recent prediction of discharge destination. In the early prediction, the micro-average AUC of the Esb-Clf and the simplified Esb-Clf was 0.846 and 0.835 during the independent testing, respectively. While in the recent prediction, the micro-average AUC of the Esb-Clf and the simplified Esb-Clf was 0.898 and 0.892. Performance of both the Esb-Clf and the simplified Esb-Clf were superior to the doctors’ in the early and the recent prediction.ConclusionsML classifiers can discriminate the discharge destination of SCI patients with high accuracy, feasibility and interpretability. Whether the simplified Esb-Clf as an online predictive tool is applicable to guiding clinical management needs further verification.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3