Spinal Cord Injury AIS Predictions Using Machine Learning

Author:

Kapoor Dhruv,Xu Clark

Abstract

The study used machine learning to predict The American Spinal Injury Association Impairment Scale (AIS) scores for newly injured spinal cord injury patients at hospital discharge time from hospital admission data. Additionally, machine learning was used to analyze the best model for feature importance to validate the criticality of the AIS score and highlight relevant demographic details. The data used for training machine learning models was from the National Spinal Cord Injury Statistical Center (NSCISC) database of U.S. spinal cord injury patient details. Eighteen real features were used from 417 provided features, which mapped to 53 machine learning features after processing. Eight models were tuned on the dataset to predict AIS scores, and Shapely analysis was performed to extract the most important of the 53 features. Patients within the NSCISC database who sustained injuries were between 1972 and 2016 after data cleaning (n = 20,790). Outcomes were test set multiclass accuracy and aggregated Shapely score magnitudes. Ridge Classifier was the best performer with 73.6% test set accuracy. AIS scores and neurologic category at the time of admission were the best predictors of recovery. Demographically, features were less important, but age, sex, marital status, and race stood out. AIS scores on admission are highly predictive of patient outcomes when combined with patient demographic data. Promising results in terms of predicting recovery were seen, and Shapely analysis allowed for the machine learning model to be probed as a whole, giving insight into overall feature trends.

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3