Strong positive allometry of bite force in leaf-cutter ants increases the range of cuttable plant tissues

Author:

Püffel FrederikORCID,Roces FlavioORCID,Labonte DavidORCID

Abstract

Attaleaf-cutter ants are the prime herbivore in the Neotropics: differently-sized foragers harvest plant material to grow a fungus as crop. Efficient foraging involves complex interactions between worker-size, task-preferences and plant-fungus-suitability; it is, however, ultimately constrained by the ability of differently-sized workers to generate forces large enough to cut vegetation. In order to quantify this ability, we measured bite forces ofA. vollenweiderileaf-cutter ants spanning more than one order of magnitude in body mass. Maximum bite force scaled almost in direct proportion to mass; the largest workers generated peak bite forces 2.5 times higher than expected from isometry. This remarkable positive allometry can be explained via a biomechanical model that links bite forces with substantial size-specific changes in the morphology of the musculoskeletal bite apparatus. In addition to these morphological changes, we show that bite forces of smaller ants peak at larger mandibular opening angles, suggesting a size-dependent physiological adaptation, likely reflecting the need to cut leaves with a thickness that corresponds to a larger fraction of the maximum possible gape. Via direct comparison of maximum bite forces with leaf-mechanical properties, we demonstrate (i) that bite forces in leaf-cutter ants need to be exceptionally large compared to body mass to enable them to cut leaves; and (ii), that the positive allometry enables colonies to forage on a wider range of plant species without the need for extreme investment into even larger workers. Our results thus provide strong quantitative arguments for the adaptive value of a positively allometric bite force.

Publisher

Cold Spring Harbor Laboratory

Reference141 articles.

1. The Origin of the Attine Ant-Fungus Mutualism

2. Hölldobler B , Wilson EO . 2010 The leafcutter ants: civilization by instinct. W. W. Norton & Company, New York City, NY, USA.

3. A pest is a pest is a pest? the dilemma of neotropical leaf-cutting ants keystone taxa of natural ecosystems;Enviromental Management,1989

4. Do herbivores exert top-down effects in neotropical savannas? estimates of biomass consumption by leaf-cutter ants;Journal of vegetation science,2008

5. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3