Abstract
AbstractAlthough metastasis is the leading cause of cancer deaths, it is quite rare at the cellular level. Only a rare subset of cancer cells (∼1 in 1.5 billion) can complete the entire metastatic cascade: invasion, intravasation, survival in the circulation, extravasation, and colonization (i.e. are metastasis competent). We propose that cells engaging a Polyaneuploid Cancer Cell (PACC) phenotype are metastasis competent. PACCs are enlarged, non-dividing cells with increased genomic content that form in response to stress. Single-cell tracking using time-lapse microscopy reveals that PACCs are more motile than nonPACCs. Additionally, PACCs exhibit increased capacity for environment-sensing and directional migration in chemotactic environments, predicting successful invasion. Magnetic Twisting Cytometry and Atomic Force Microscopy reveal that cells in the PACC state display hyper-elastic properties like increased peripheral deformability and maintained peri-nuclear cortical integrity that predict successful intravasation and extravasation. Furthermore, four orthogonal methods reveal that PACCs have increased expression of Vimentin, a known hyper-elastic biomolecule. Lastly, anoikis-resistance assays and detection of PACCs in the blood of a patient with metastatic castrate-resistant prostate cancer using a selection- free circulating tumor cell detection platform reveal that PACCs are capable of surviving in the circulation. Taken together with the knowledge that PACCs are capable of eventual depolyploidization and progeny formation (as a potential route to colonization), these data support PACCs as candidate metastasis-competent cells worthy of further analysis.
Publisher
Cold Spring Harbor Laboratory