Cells in the Polyaneuploid Cancer Cell (PACC) state have increased metastatic potential

Author:

Mallin Mikaela M.ORCID,Kim Nicholas,Choudhury Mohammad Ikbal,Lee Se Jong,An Steven S.,Sun Sean X.,Konstantopoulos Konstantinos,Pienta Kenneth J.,Amend Sarah R.ORCID

Abstract

AbstractAlthough metastasis is the leading cause of cancer deaths, it is quite rare at the cellular level. Only a rare subset of cancer cells (∼1 in 1.5 billion) can complete the entire metastatic cascade: invasion, intravasation, survival in the circulation, extravasation, and colonization (i.e. are metastasis competent). We propose that cells engaging a Polyaneuploid Cancer Cell (PACC) phenotype are metastasis competent. PACCs are enlarged, non-dividing cells with increased genomic content that form in response to stress. Single-cell tracking using time-lapse microscopy reveals that PACCs are more motile than nonPACCs. Additionally, PACCs exhibit increased capacity for environment-sensing and directional migration in chemotactic environments, predicting successful invasion. Magnetic Twisting Cytometry and Atomic Force Microscopy reveal that cells in the PACC state display hyper-elastic properties like increased peripheral deformability and maintained peri-nuclear cortical integrity that predict successful intravasation and extravasation. Furthermore, four orthogonal methods reveal that PACCs have increased expression of Vimentin, a known hyper-elastic biomolecule. Lastly, anoikis-resistance assays and detection of PACCs in the blood of a patient with metastatic castrate-resistant prostate cancer using a selection- free circulating tumor cell detection platform reveal that PACCs are capable of surviving in the circulation. Taken together with the knowledge that PACCs are capable of eventual depolyploidization and progeny formation (as a potential route to colonization), these data support PACCs as candidate metastasis-competent cells worthy of further analysis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3