FAS: Assessing the similarity between proteins using multi-layered feature architectures

Author:

Dosch Julian,Bergmann Holger,Tran Vinh,Ebersberger IngoORCID

Abstract

AbstractMotivationExpert curation to differentiate between functionally diverged homologs and those that may still share a similar function routinely relies on the visual interpretation of domain architecture changes. However, the size of contemporary data sets integrating homologs from hundreds to thousands of species calls for alternate solutions. Scoring schemes to evaluate domain architecture similarities can help to automatize this procedure, in principle. But existing schemes are often too simplistic in the similarity assessment, many require an a-priori resolution of overlapping domain annotations, and those that allow overlaps to extend the set of annotations sources cannot account for redundant annotations. As a consequence, the gap between the automated similarity scoring and the similarity assessment based on visual architecture comparison is still too wide to make the integration of both approaches meaningful.ResultsHere, we present FAS, a scoring system for the comparison of multi-layered feature architectures integrating information from a broad spectrum of annotation sources. Feature architectures are represented as directed acyclic graphs, and redundancies are resolved in the course of comparison using a score maximization algorithm. A benchmark using more than 10,000 human-yeast ortholog pairs reveals that FAS consistently outperforms existing scoring schemes. Using three examples, we show how automated architecture similarity assessments can be routinely applied in the benchmarking of orthology assignment software, in the identification of functionally diverged orthologs, and in the identification of entries in protein collections that most likely stem from a faulty gene prediction.Availability and implementationFAS is available as python package: https://pypi.org/project/greedyFAS/

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3