Effect of Nonlinear Hyperelastic Property of Arterial Tissues on the Pulse Wave Velocity based on the Unified-Fiber-Distribution (UFD) Model

Author:

Dong HaiORCID,Liu Minliang,Woodall Julia,Leshnower Bradley,Gleason Rudolph L.

Abstract

AbstractPulse wave velocity (PWV) is a key, independent risk factor for future cardiovascular events. The Moens-Korteweg equation describes the relation between PWV and the stiffness of arterial tissue with an assumption of isotopic linear elastic property of the arterial wall. However, the arterial tissue exhibits highly nonlinear and anisotropic mechanical behaviors. There is a limited study regarding the effect of arterial nonlinear and anisotropic properties on the PWV. In this study, we investigated the impact of the arterial nonlinear hyperelastic properties on the PWV, based on our recently developed unified-fiber-distribution (UFD) model. The UFD model considers the fibers (embedded in the matrix of the tissue) as a unified distribution, which expects to be more physically consistent with the real fiber distribution than existing models that separate the fiber distribution into two/several fiber families. With the UFD model, we fitted the measured relation between the PWV and blood pressure which obtained a good accuracy. We also modeled the aging effect on the PWV based on observations that the stiffening of arterial tissue increases with aging, and the results agree well with experimental data. In addition, we did parameter studies on the dependence of the PWV on the arterial properties of fiber initial stiffness, fiber distribution, and matrix stiffness. The results indicate the PWV increases with increasing overall fiber component in the circumferential direction. The dependences of the PWV on the fiber initial stiffness, and matrix stiffness are not monotonic and change with different blood pressure. The results of this study could provide new insights into arterial property changes and disease information from the clinical measured PWV data.

Publisher

Cold Spring Harbor Laboratory

Reference53 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3