Effect of Aging, Sex, and Gene (Fbln5) on Arterial Stiffness of Mice: 20 Weeks Adult Fbln5-knockout Mice Have Older Arteries than 100 Weeks Wild-Type Mice

Author:

Dong Hai,Ferruzzi Jacopo,Liu Minliang,Brewster Luke P.,Leshnower Bradley G.,Gleason Rudolph L.

Abstract

AbstractThe arterial stiffening is a strong independent predictor of cardiovascular risk and has been used to characterize the biological age of arteries (‘arterial age’). Here we revealed that the Fbln5 gene knockout (Fbln5-/-) significantly increases the arterial stiffening for both male and female mice. We also showed that the arterial stiffening increases with natural aging, but the stiffening effect of Fbln5-/-is much more severe than aging. The arterial stiffening of 20 weeks old mice with Fbln5-/-is much higher than that at 100 weeks in wild-type (Fbln5+/+) mice, which indicates that 20 weeks mice (equivalent to ∼26 years old humans) with Fbln5-/-have older arteries than 100 weeks wild-type mice (equivalent to ∼77 years humans). Histological microstructure changes of elastic fibers in the arterial tissue elucidate the underlying mechanism of the increase of arterial stiffening due to Fbln5-knockout and aging. These findings provide new insights to reverse ‘arterial age’ due to abnormal mutations of Fbln5 gene and natural aging.This work is based on a total of 128 biaxial testing samples of mouse arteries and our recently developed unified-fiber-distribution (UFD) model. The UFD model considers the fibers in the arterial tissue as a unified distribution, which is more physically consistent with the real fiber distribution of arterial tissues than the popular fiber-family-based models (e.g., the well-know Gasser-Ogden-Holzapfel [GOH] model) that separate the fiber distribution into several fiber families. Thus, the UFD model achieves better accuracies with less material parameters. To our best knowledge, the UFD model is the only existing accurate model that could capture the property/stiffness differences between different groups of the experimental data discussed here.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3