Drug specificity and affinity are encoded in the probability of cryptic pocket opening in myosin motor domains

Author:

Meller ArturORCID,Lotthammer Jeffrey M.ORCID,Smith Louis G.ORCID,Novak BornaORCID,Lee Lindsey A.ORCID,Kuhn Catherine C.,Greenberg LinaORCID,Leinwand Leslie A.ORCID,Greenberg Michael J.ORCID,Bowman Gregory R.ORCID

Abstract

AbstractThe design of compounds that can discriminate between closely related target proteins remains a central challenge in drug discovery. Specific therapeutics targeting the highly conserved myosin motor family are urgently needed as mutations in at least 6 of its members cause numerous diseases. Allosteric modulators, like the myosin-II inhibitor blebbistatin, are a promising means to achieve specificity. However, it remains unclear why blebbistatin inhibits myosin-II motors with different potencies given that it binds at a highly conserved pocket that is always closed in blebbistatin-free experimental structures. We hypothesized that the probability of pocket opening is an important determinant of the potency of compounds like blebbistatin. To test this hypothesis, we used Markov state models (MSMs) built from over 2 milliseconds of aggregate molecular dynamics simulations with explicit solvent. We find that blebbistatin’s binding pocket readily opens in simulations of blebbistatin-sensitive myosin isoforms. Comparing these conformational ensembles reveals that the probability of pocket opening correctly identifies which isoforms are most sensitive to blebbistatin inhibition and that docking against MSMs quantitatively predicts blebbistatin binding affinities (R2=0.82). To test our ability to make blind predictions, we predicted blebbistatin’s binding affinity for an isoform (Myh7b) whose blebbistatin sensitivity was unknown. Encouragingly, we find good agreement between the predicted and measured IC50 (0.67 µM vs. 0.36 µM). Therefore, we expect this framework to be useful for the development of novel specific drugs across numerous protein targets.SignificanceDrug development requires the discovery of compounds which specifically target one member of a protein family without triggering side effects that arise from interactions with other related proteins. Myosins are a family of motor proteins that are drug targets for heart diseases, cancer, and parasitic infections. Here, we investigate why the compound blebbistatin specifically inhibits some myosins more potently than others, even though its binding site is closed in all known experimental structures. We find that the blebbistatin binding pocket opens in molecular dynamics simulations of certain myosin motors, and that the probability of opening predicts how potently blebbistatin inhibits a particular motor. Our work suggests that differences in cryptic pocket formation can be exploited to develop specific therapeutics.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3