Abstract
ABSTRACTThe current circulating pandemic El Tor biotype of Vibrio cholerae has persisted for over sixty years and is characterized by its acquisition of two unique genomic islands called the Vibrio Seventh Pandemic Islands 1 and 2 (VSP-I and VSP-II). However, the functions of most of the genes on VSP-I and VSP-II are unknown and the advantages realized by El Tor through these two islands are not clear. Recent studies have broadly implicated these two mobile genetic elements with phage defense. Still, protection against phage infection through these islands has not been observed directly in any V. cholerae El Tor biotype. Here we report the isolation of a circulating phage from a cholera patient stool sample and demonstrate that propagation of this phage in its native host is inhibited by elements in both VSP-I and VSP-II, providing direct evidence for the role of these genomic islands in phage defense. Moreover, we show that these defense systems are regulated by quorum sensing and active only at certain cell density. Finally, we have isolated a naturally occurring phage variant that is resistant to the defense conferred by the VSP islands, illustrating the countermeasures used by phages to evade these defense mechanisms. Together, this work demonstrates a functional role for the VSPs in V. cholerae and highlights the key regulatory and mechanistic insights that can be gained by studying anti-phage systems in their native contexts.SIGNIFICANCE (AUTHOR SUMMARY)The current pandemic strain of Vibrio cholerae carries two unique genomic islands. How these two islands confer evolutionary advantage to the pathogen is unknown. We show here the identification of a circulating phage that is sensitive to the defense systems present on these two islands and demonstrate how phage variants can evade these defenses. Our studies provide the first direct evidence showing the importance of these genomic islands in defending against phage in their native environments; and in doing so provide novel insight into the mechanisms of these highly conserved defense elements.
Publisher
Cold Spring Harbor Laboratory