Evidence of a Dominant Lineage of Vibrio cholerae-Specific Lytic Bacteriophages Shed by Cholera Patients over a 10-Year Period in Dhaka, Bangladesh

Author:

Seed Kimberley D.1,Bodi Kip L.1,Kropinski Andrew M.2,Ackermann Hans-Wolfgang3,Calderwood Stephen B.4,Qadri Firdausi5,Camilli Andrew1

Affiliation:

1. Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA

2. Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, and Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada

3. Department of Microbiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada

4. Division of Infectious Diseases, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA

5. International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh

Abstract

ABSTRACT Lytic bacteriophages are hypothesized to contribute to the seasonality and duration of cholera epidemics in Bangladesh. However, the bacteriophages contributing to this phenomenon have yet to be characterized at a molecular genetic level. In this study, we isolated and sequenced the genomes of 15 bacteriophages from stool samples from cholera patients spanning a 10-year surveillance period in Dhaka, Bangladesh. Our results indicate that a single novel bacteriophage type, designated ICP1 (for the I nternational Centre for Diarrhoeal Disease Research, Bangladesh c holera p hage 1 ) is present in all stool samples from cholera patients, while two other bacteriophage types, one novel (ICP2) and one T7-like (ICP3), are transient. ICP1 is a member of the Myoviridae family and has a 126-kilobase genome comprising 230 open reading frames. Comparative sequence analysis of ICP1 and related isolates from this time period indicates a high level of genetic conservation. The ubiquitous presence of ICP1 in cholera patients and the finding that the O1 antigen of lipopolysaccharide (LPS) serves as the ICP1 receptor suggest that ICP1 is extremely well adapted to predation of human-pathogenic V. cholerae O1. IMPORTANCE The severe diarrheal disease cholera is caused by the bacterium Vibrio cholerae , which can be transmitted to humans from the aquatic environment. Factors that affect V. cholerae in the environment can impact the occurrence of cholera outbreaks; one of these factors is thought to be the presence of bacterial viruses, or bacteriophages. Bacteriophages that prey on V. cholerae in the environment, and potentially in humans, have not been extensively genetically characterized. Here, we isolated and sequenced the genomes of bacteriophages from cholera patient stool samples collected over a 10-year period in Dhaka, Bangladesh, a region that suffers from regular cholera outbreaks. We describe a unique bacteriophage present in all samples, infer its evolution by sequencing multiple isolates from different patients over time, and identify the host receptor that shows that the bacteriophage specifically predates the serogroup of V. cholerae responsible for the majority of disease occurrences.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3