Development of dim-light vision in the nocturnal coral reef fish family, Holocentridae

Author:

Fogg Lily G.ORCID,Cortesi FabioORCID,Lecchini David,Gache Camille,Marshall N. JustinORCID,de Busserolles FannyORCID

Abstract

AbstractDevelopmental changes to the visual systems of animals are often associated with ecological shifts. Reef fishes experience a change in habitat between larval life in the shallow open ocean to juvenile and adult life on the reef. Some species also change their lifestyle over this period and become largely nocturnal. While these ecological transitions are well documented, little is known about the ontogeny of nocturnal reef fish vision. Here, we used histology and transcriptomics to investigate visual development in 12 representative species from both subfamilies, Holocentrinae (squirrelfishes) and Myripristinae (soldierfishes), in the nocturnal coral reef fish family, Holocentridae. Results revealed that the visual systems of holocentrids are initially well-adapted to photopic conditions with pre-settlement larvae having high cone densities, high cone opsin gene expression, a broad cone opsin gene repertoire (8 genes) and a multibank retina (i.e., stacked layers of rods) comprising up to two rod banks. At reef settlement, holocentrids started to invest more in their scotopic visual system and upregulated genes involved in cell differentiation/proliferation. By adulthood, they had well-developed scotopic vision with a rod-dominated multibank retina comprising 5-17 rod banks, increased summation of rods onto ganglion cells, high rod opsin gene expression, reduced cone opsin gene expression and repertoire (1-4 genes) and upregulated phototransduction genes. Finally, although the two subfamilies shared similar ecologies across development, their visual systems diverged after settlement, with Myripristinae investing more in scotopic vision than Holocentrinae. Hence, both ecology and phylogeny likely determine the development of the holocentrid visual system.Summary statementCoral reef fishes in the family Holocentridae remodel their retina at the cellular and molecular levels to adapt to a nocturnal lifestyle during development.

Publisher

Cold Spring Harbor Laboratory

Reference123 articles.

1. Estimation of nuclear population from microtome sections

2. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update

3. Allen, G.R. ; Erdmann, M.V. . 2012. Reef fishes of the East Indies (Universitiy of Hawai’i Press: Perth, Australia).

4. Allen, G.R. ; Steene, R.C. 1988. Fishes of Christmas Island Indian Ocean (Christmas Island Natural History Association: Christmas Island, Australia).

5. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3