PHi-C2: interpreting Hi-C data as the dynamic 3D genome state

Author:

Shinkai SoyaORCID,Itoga HiroyaORCID,Kyoda KojiORCID,Onami ShuichiORCID

Abstract

SummaryHi-C is a widely used assay for studying three-dimensional (3D) genome organization across the whole genome. Here, we present PHi-C2, a Python package supported by mathematical and biophysical polymer modeling, that converts an input Hi-C matrix data into the polymer model’s dynamics, structural conformations, and rheological features. The updated optimization algorithm to regenerate a highly similar Hi-C matrix provides a fast and accurate optimal solution compared to the previous version by eliminating a computational bottleneck in the iterative optimization process. Besides, we newly set up the availability on Google Colab workflow to run, easily change parameters and check the results in the notebook. Overall, PHi-C2 can be a valuable tool to mine the dynamic 3D genome state embedded in Hi-C data.Availability and ImplementationPHi-C2 as the phic Python package is freely available under the GPL license and can be installed from the Python package index. The source code is available from GitHub at https://github.com/soyashinkai/PHi-C2. Without preparing a Python environment, PHi-C2 can run on Google Colab (https://bit.ly/3rlptGI).Contactsoya.shinkai@riken.jp or sonami@riken.jp

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3